Oxygen Reduction by Lithiated Graphene and Graphene-Based Materials

Author(s)
Elmar Yu Kataev, Daniil M. Itkis, Alexander V. Fedorov, Boris V. Senkovsky, Dmitry Yu Usachov, Nikolay I. Verbitskiy, Alexander Grüneis, Alexei Barinov, Daria Yu Tsukanova, Andrey A. Volykhov, Kirill V. Mironovich, Victor A. Krivchenko, Maksim G. Rybin, Elena D. Obraztsova, Clemens Laubschat, Denis V. Vyalikh, Lada V. Yashina
Abstract

Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

Organisation(s)
Electronic Properties of Materials
External organisation(s)
Anuchin Research Institute and Museum of Anthropology, Universität zu Köln, Elettra─Sincrotrone Trieste, Russian Academy of Sciences, Saint Petersburg State University, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden
Journal
ACS Nano
Volume
9
Pages
320-326
No. of pages
7
ISSN
1936-0851
DOI
https://doi.org/10.1021/nn5052103
Publication date
01-2015
Peer reviewed
Yes
Austrian Fields of Science 2012
103018 Materials physics
Keywords
ASJC Scopus subject areas
Engineering(all), Physics and Astronomy(all), Materials Science(all)
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Portal url
https://ucris.univie.ac.at/portal/en/publications/oxygen-reduction-by-lithiated-graphene-and-graphenebased-materials(7c48a652-df8f-42eb-9f30-a38d886db757).html